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The method of multiple-scales is used to obtain the asymptotic solution of the 
Orr-Sommerfeld equation. For the special case of a linear velocity profile, the 
solution so obtained agrees well with an approximation of the exact solution 
which is known. For the general case, transformations on both the dependent 
and independent variables are introduced to obtain a zeroth-order equation 
which differs from the inner equation studied so far. On the ground of the 
favourable comparison for the special case, the asymptotic solution constructed 
is expected to be uniformly valid. 

1. Introduction 
The Orr-Sommerfeld equation governs two-dimensional infinitesimal dis- 

turbances in a basic two-dimensional flow. (Three-dimensional disturbances can 
also be considered using the Squire transformation.) The differential equation 
is linear, ordinary, of the fourth order, containing three parameters, and has one 
or more simple turning points. No exact solution of this equation has been ob- 
tained for a general velocity profile. The situation of primary physical interest is 
when one of the parameters is large, and most solutions attempted are constructed 
for that parameter tending to infinity. Notably, there are two approaches in its 
solution. In  the heuristic approach, two asymptotic expansions: an inner ex- 
pansion about the turning point and an outer expansion away from it, are con- 
sidered simultaneously. The difficulty in this approach is that one of the solutions 
obtained from the outer expansion is singular at  the turning point. In  the more 
rigorous method of comparison equations, the asymptotic solutions are con- 
structed in terms of those of a simpler reference equation. In  this paper, the 
asymptotic solution is obtained by the method of multiple-scales; Mahony 
(1962), Van Dyke (1964). Pour linearly independent solutions are constructed 
from a stretched form of the Orr-Sommerfeld equation, with the unknown 
function treated as dependent on both the stretched and unstretched variables. 
By virtue of the expansion procedure, the solutions are expected to be uniformly 
valid. For the special case when the basic velocity profile is linear, the exact 
solution has been obtained by Sommerfeld (1908). The asymptotic solution is 
compared with an appropriate expansion of the exact solution and it is seen that 
there is good agreement between them. 

For a general velocity profile, consideration is limited to the case of a simple 
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turning point. The dependent and independent variables are transformed to new 
variables which are expected to be more appropriate for the construction of 
uniformly valid asymptotic solutions. Four solutions of the zeroth-order equation 
are obtained. 

Recently, Graebel (1966) applied the method of matched-expansions to the 
classical inner and outer solutions to obtain eigenvalue relations. As the multiple- 
scales method is a variant of the method of matched-expansions, it  is readily 
seen that the zeroth-order equation obtained by the former method is of the 
same form as the inner equation obtained by the latter, but with ordinary 
differential operators replaced by the corresponding partial operators. In  this 
manner, its solutions have coefficients which are functions of the unstretched 
variable. These functions are then chosen to ensure the uniform validity of the 
asymptotic expansion. Further, in using the multiple-scales method, there is no 
need to consider any solution which is singular at the turning point. 

2. Asymptotic solution of the Orr-Sommerfeld equation for a linear 
velocity profile 

In  the non-dimensional form, the Orr-Sommerfeld equation is 

where D = d/dx; a is the wave-number of the disturbance; 4 is the amplitude of 
the disturbance; R is the Reynolds number; U is the basic velocity profile; and 
c is a complex number denoting the speed and amplification of the disturbance. 
Of interest is the eigenvalue relation obtained by imposing the boundary con- 
ditions q5 = 04 = 0 at  two points to the solution of (2.1). When the basic velocity 
profile is linear (2 = x), equation (2.1) becomes 

Here we shall be concerned with the asymptotic solution when aR tends to 
infinity. 

The substitution z = i (x  - c), which is a special case of the substitution used in 
$3, and the stretching z = (aR)-*t transform (2.2) into 

$’+ (5 + 2@a2)4 + ( € “ 2 t  + s4a4) q5 = 0, (2.3) 

where €3 = l/aR and the dot denotes differentiation with respect to 6. The 
function 4 is now treated as a function of both z and 6, and the ordinary differ- 
ential operator is replaced by the corresponding partial operator. Hence, we 
write 
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We seek an asymptotic expansion for $ of the form 
00 

$ @ 7  5,4 = I: 0 4 % ( Z 7  0 (€-to). 
n=O 

On substitution of (2.6) in (2.5) and equating the coefficients of powers of E t o  
zero, an infinite number of equations for the determination of q5m is obtained. 
With the notation 

a 4  a2  
9 = -+,$--, 

a t 4  at2 

the fist  three of these are 
a$,) = 0, (2.7) 

(2.8) 

2 ( $ 2 )  = - 4 4  1,tttz - %$i,tz - 6$o,tCzz - Eq50,zz - 2a2$ 0," - = h 2 b  5). (2.9) 

It is clear that $,(n B 1) may be obtained in an iterative manner once $, is 
known. 

The solutions of (2.7) are integrals of the Airy functions. Alternately, they 
may be expressed as 

=W$1) = - 4$0,t55z- 26q50,~z = hi@, 0 9  

F,(~J = I c k t - 2  ett++tsdt, (2.10) 

where c, is such that [dt+~ ' ] ,  = 0. In  the unshaded sectors of the t-plane, as shown 
in figure 1, t3 has negative real part. The integral in (2.10) converges when c, is 
chosen as any of the three contours depicted. Further, the integrand has a pole 
of order two at the origin with residue E, so that if c is chosen to be a closed 
contour around the origin, say c,, then 

(2.11) 

It is readily checked that E;c, k =  1, 2, 3, are linearly independent. The four 
solutions F, (k = 0, 1, 2, 3) corresponding to c, are not linearly independent as, 
by Cauchy's theorem, 

F,+F,+F3 = Po. 

A fourth solution is independent of 6,  and may be an arbitrary function of z. 
Four solutions of q5, may thus be chosen as D,(z), C,(Z) E ,  and any two of Fl, F2 and 
F3, with coefficients which are functions of z. 

To construct a uniformly valid asymptotic expansion, the behaviour of 
Fk(() when 161 tends to infinity will be required. This is obtained by the method 
of steepest descents in appendix A, The result of this evaluation is that the c- 
plane is divided into three equal sectors S,, k = 1, 2 ,  3, (see figure 2 )  in each of 
which F'(6) is exponentially decreasing while the other two functions are ex- 
ponentially increasing. Let us suppose that the boundary conditions $ = D$ = 0 
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FIGURE 2. Diagram for the choice of branches. 
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are to be applied at points x, and x2,  with corresponding points x, and x, ,which lie 
respectively in the sectors 8, and S,. We write the solution of $o as 

$0 = Ao(4 Fl(6) + Bo(4 F2(9 + CO(4 6 + Do(4. (2.12) 

The arbitrary functions of z are to be determined from consideration of higher- 
order terms. 

The derivatives of q50 will be required in the determination of $,. It is readily 
seen that differentiation of Fk(6) with respect to 6 under the integral sign is 
permissible (Sanone & Gerretsen 1960). Hence, we have 

(2.13) 

It follows from appendix A that when Fk is exponentially decreasing or increasing, 
so are its derivatives. From (2.8), we have 

-q$,) = - 4A6(4FY(t) - 2tA&)FI(t) - 4B;(W;(t) - 2 6 W ) W t )  

- 2C&) t = M x ,  6). 
Here, as in what follows, the prime denotes differentiation with respect to the 
argument of the function. Using the variation of parameters method, it is readily 
seen that the general solution of $, is 

Here W is the Wronskian of the four solutions PI, F2, < and 1; W, (k = 1, 2, 3, 4) 
is the determinant obtained by replacing the kth column of W by the column 
(0, 0, 0, 1). It follows that 

(2.15) 1 
W = constant, 

WC) = KxC) ; MC) = - P'l(C) ; 
WAC) = mC)F';(C) - PI(C)PX); 
%(5) = - C W C )  - ~ , ( C ) ~ X )  +4(C)F'l(C). 

To determine the arbitrary functions of z in $o, we impose the condition that 
the terms of the asymptotic expansion (6) satisfy 

(2.16) 

and the same shall be true for their partial derivatives. 
It is obvious that the complementary function of $, will satisfy (2.16), so only 

the particular integral in (2.14) need be considered. This involves integrals of the 
product of h, and derivatives of p k .  Their asymptotic behaviour may be approxi- 
mated by substituting for Fk and its derivatives their corresponding asymptotic 
representations before evaluating the integrals. For the present purpose, an 
order of magnitude consideration will suffice. Since $o is in fact the sum of four 
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solutions ofL?($,) = 0, condition (16) will be applied to each of these functions. 
For example, in comparing Ao(z)Fl(() with 

we consider only the contribution of Ao(z)Fl(5) to h,(z, 5). Further, it is only 
necessary to carry out the comparison for 5 in either X, or X 2  since $, behaves 
similarly in both sectors. It follows from appendix A that, as 151 tends to infinity 
in S,, 

(2.17) I W(5) = 0(5-teXP{$I5I$)), W,(O = 0(5-)exP{-%lEp>), 

W5) = O(5-l) ; 
- 4AA(z)FY(5) - 25Ah(w;(5) = W e x p {  -$I#), 
- 4Bh(z)F"'(5) - 25BA(z)P'(6) = O(@exp{$1@}), 

= O(1) ; 

- 2 5 ~ ' ( z )  = O(5). 

Condition (2.16) is satisfied if 

holds for 161 tending to infinity. It is readily seen that this requires 

A;@) = Bh(z) = c;(z) = 0 (2.18) 

and that no information is available to determine Do(z). We denote the constants 
obtained from (18) by AoO, Boo, Coo, and proceed to consider $,, with the know- 
ledge that 

(2.19) 

Similar to (2.14), the completesolution for $2 maybewrittendownimmediately. 
The nonhomogeneous part of equation (2.9) giving rise to the particular integral 
is 

As in (2.18), we require 

I $0 = Ao0~1(5)+B,F2(5) +Co05+Do(z), 

$1 = A1(z)F1(5) +BlMF2(5) +C1(45+Dl(Z)* 

h,(z, 5) = - %k"&-25$l,~z-- 640,558s- 5 $ o , z z -  2"2$o,&- a"$o. 

A;@) = B;(z) = c;(z) = 0, 

h2(2, 5) = - 5 $ o , * s - 2 a 2 $ 0 , ~ ~ - - 2 5 $ o .  

- 2a2Aoop;(5) --25Aoo~l(5) = O(5-k+$15p))?  
- 2a2B0oF4(5) -a25BooF2(5) = 0(5-%exP{$15p>), 
- a"Coo~ = - a2Co, 52, 

- W o ( 4 , s z  - @2Do(4 = - 5[Do(z),,, + a2Do(z)l. 

reducing h, to 
Now, we have 

In carrying out the comparison of the individual functions, we see that 
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Hence, we require coo = 0, 

and Do(z),,+a2Do(4 = 0 
yielding Do(x) = Do, eiaz + Do, e-iaB. (2.20) 

q50(z, 6 )  = AoOFl(5) + BooF2(5) + Do, eiaz + D 02 cia2. (2.21) 

The zeroth-order solution q50 is therefore completely determined as 

For our present comparison purpose, the higher-order terms need not be con- 
sidered. It is shown in appendix B that there is good agreement between this 
zeroth-order solution and an appropriate expansion of the exact solution. 

3. Asymptotic solution of the Orr-Sommerfeld equation for a general 
velocity proiile 

In  studying the Orr-Sommerfeld equation (2.1) with a general velocity profile, 
it is assumed in the following that 5 is a monotonic function of x,  so that (G - c )  
has a simple zero. 

We introduce the following transformations on both the dependent and 
independent variables as in Lin & Rabenstein (1960) : 

where Po = - i (U  - c )  and xo is the turning point where Po(xo) = 0. For the special 
case 5 = x,  these reduce essentially to the transformation used in $2. Here, the 
choice of the independent variable is based on a comparison of two classical 
asymptotic solutions, which in essence are inner and outer solutions. The trans- 
formation of the dependent variable serves only to simplify the subsequent 
equation. From heuristic arguments, it is expected that this independent variable 
is the appropriate choice for the construction of uniformly valid asymptotic 
solutions, (Lin 1955, p. 128). In  terms of these variables, the Orr-Sommerfeld 
equation (2.1) becomes 

s2pv + ( x  + s3p)@" + (qo + e3q1) + (yo + e3rl) @ = 0, (3.2) 

where p ,  qo, ql, ro and rl are functions of x :  

I 

The other functions of z are not required for the purpose of obtaining the zeroth 
order asymptotic solution, and so will not be presented. For the sake of brevity, 
Po is retained as a function of x. Clearly, if U is given, it is possible to express x in 
terms of z. 
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If we introduce the stretching transformation x = e(, and write 

equation (3.2) becomes 

@ ,m + <@,g + 40 @,g + 44@,gcz + ~ E $ , E ~  + qo @,z + yo @I 
+ E 2 { 6 @ , & Z  + C $ , Z Z  + P@,&} 
+ e3(4@, tzze + q1 @, + 2~ @,,,> 
+ e4{@, zzzB + rl @ + P@, Bz + q1 $ ,J  = 0. (3.4) 

(3.5) 

The zeroth-order equation is 

$0. [fEf + w o  , + 4b @ O , E  = 0. 

It differs from the inner equation of the form Pv + ($ Ir  = 0 used so far in the 
study of the Orr-Sommerfeld equation. On the strength of the comparison 
carried out in appendix B for the special case U = x, it seems reasonable to 
expect that the solutions of (3.5) will be a good approximation to those of the 
original equation for large values of aR. 

With v = @o,E, equation (3.5) becomes 

vu,[g+<v,5+40“ = 0. (3.6) 

In  solving this equation, qo(x) may be treated as a constant since all partial 
differentiations are with respect to (. However, to simplify the subsequent 
comparison necessary for the complete determination of @o, we replace it by the 
constant qoo obtained by making the following approximations : 

Po = - i (u.-c)  A - iu’ (xo) (x-~o) ,  P‘ = - iGr(x0) ,  x = [ - i ~ ’ ( x O ) ] ~ ( x - x O ) .  

Hence 

is a constant. This simplification may be considered as the result of expanding 
qo(x) in a Taylor series and writing xn as en(n. Then qoo is formally of order one, and 
all succeeding terms are formally of order e or smaller. Instead of (3.6)) we consider 

V,& + <V,c + qoov = 0. 

2)”’ + h2ZV’ + 3A”V = 0, 

(3.7) 

Langer (1955) and Hershenov (1957) have considered the asymptotic solution of 

(3.8) 

where the prime denotes differentiation with respect to z and p is a complex 
constant. If  we make the transformation x = A-g<, equation (3.8) becomes 

9+(@+3pv = 0. 

Hence, the solution obtained by these authors is directly applicable. 
It is readily seen that the solutions of (3.7) can be obtained in integral form as 
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where c, is such that [tgooexp(@++gt3)],, = 0. The solutions of ( 3 4 ,  with poo 
replacing po, are therefore 

F,(<) = v d f  + constant s 
= JCk ~oo-zexp {[t +&3}dt + constant. (3.10) 

Hence, knowing the solutions of (3.7), we can obtain those of (3.5) by replacing 
qoo by qoo- 1. Similarly, the nth order derivative of I ,  can be obtained by re- 
placing Po0 by Po0 + n. 

The asymptotic expansion of (3.10) is as follows: (Hershenov 1957) 

Ik(<) N a,d exp { - ~ n ( ~ q o o  + ~ ) } @ ~ ~ ~ - ~ ) e x p  ( - gigs) [ 1 + O( I/  161)] (3.1 1) 

477 877 3n 8n 
3 3  3 3  

_--_ ( k - 2 )  < arg$ < ---(k-2),mod477, valid for 

where k = 1, 2,  3; and a, = - 1, a2 = - 1, a3 = 1. As in the case considered in 
$ 2 ,  the [-plane is divided into three equal sectors in each of which there is one 
solution which is exponentially decreasing as 1EJ tends to infinity and two 
solutions which are exponentially increasing. The tentative solution of $o is 

(3.12) 

where the functions of x are to be determined. Proceeding as in $2 and using the 
same notations, we require that as 161 tends to infinity, h, tends to zero. This 
yields the following first order differential equations for the determination of 

( ~ ~ ~ + ~ , ) ~ O ( ~ ) , , + ~ O A O ~ ~ )  = 07 (3.13) 

AO(4, Bo(& CO(4 and DoW: 

where 

Similar equations govern Bo(z) and Co(z); and 

K = 2 e+[2 e-n + 11. 

P o D o ( 4 , z + ' o D o ( z )  = 0. (3.14) 

Since we suppose these functions depend on z only, 5% must be expressed as 
e-%z%. The solutions of the above equations are 

Hence, we have the complete zeroth order solution 

(3.15) 
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4. Concluding remarks 
A multiple-scales method is used to construct uniformly valid asymptotic 

solutions for the Orr-Sommerfeld equation. For the case of a linear velocity 
profile, the solution constructed agrees with an expansion of the exact solution 
obtained by Sommerfeld. The solution obtained for a general velocity profile 
is being applied to the case of plane Poiseuille flow to obtain the characteristic 
equation. The calculation will be published when completed. 

We observe that in using the multiple-scales method, one attempts to con- 
struct uniformly valid solutions from the inner equation, formulated as de- 
pendent on both the stretched and unstretched variables. The inviscid equation, 
obtained by setting e = 0 in the unstretched equation, is not considered. Hence 
there is no need to use any solution which is singular at the turning point. 

This paper is an extension of part of a Ph.D. thesis submitted to the University 
of Toronto in 1965. The author is grateful to Professor A. F. Pillow and Professor 
P. B. Chapman for their guidance, and to the referees for their constructive 
criticisms. 

Appendix A. The asymptotic solution of qP + Cq5” = 0 

It is readily seen that the equation admits solutions 

where t is a complex variable, f ( t )  = t-2eits, and ck is a contour such that 
[ e ~ t ~ t s J 7 ,  = 0.  The integral converges when ck is chosen as in figure 1. Denoting 
Fk by Fk(<, - 2 ) ,  where - 2  denotes the power of t in f ( t ) ,  differentiation with 
respect to < yields 

(A 2 )  
dnFk 
__ ( k - 3  - 2) = Fk(&, n- 2 ) .  

The behaviour of Fk(<, A) ,  where h is an integer, for \ < I  -+a may be evaluated by 
the method of steepest descents. The following treatment follows closely that of 
Rabenstein (1958). 

Let t = crr = ( - i&r. Writing q = i#@, we have 

it3+@ = q(ir3-+r) = Iq lg(r) ,  

where g(T)  = eiv(&r3-#~) 

and 

The integral (A 1) is then transformed into 

v = argq = $argC++n. 

where c; is the image of ck in the .r-plane. Clearly, the location of c i  depends on the 
choice of a branch of cr = - ($q)#i#. 
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For the integral (A3) to converge, e%3 must have negative real part, as 
1.1 --f co for fixed arg 7 = $, which requires 

4n+2nn < v+3$ < $n+2nn. (A 4) 

The function g(7) has a saddle-point at  7 = 1 where g'(7) = 0. The path of steepest 
descent through 7 = 1 is given by 

Im [9@) - S(1)l = 0. (A 5) 

To plot this path, let 7 - 1 = p eio, then 

g(7)  - g( 1) = eiV[$pZ ei2o + 1 ZP 3 1 
and (A 5 )  becomes 

p2[3 sin (v + 20) + p  sin (v + 3w)l = 0, 

1 1sin(v+3w) 
p 3sin(v+2w)* 

As p -+ 00, w approaches $ and we require sin (v + 3 w )  G 0. This, together with 
(A 4), is satisfied if $ = +_ +n - +v - 2nn. 

The idea now is to choose for each Fk a branch of cr = - ($r))iQ so that for v in 

-n+2nn < v < nf2nn,  each of the regions 

c; goes to infinity in the same two sectors of the 7-plane as the path of steepest 
descent. Then c; can be deformed to coincide with the steepest path. This re- 
quirement will be satisfied if we take n = k - 2 and take cr = 1Zjq 14 e i h  for v in the 
range 

To see that this choice is correct, let ck go to infinity in the t-plane with directions 

argt = ++n+3r(k-2), 

then since arg 7 = arg t - arg cr, we see that c; goes to infinity in the 7-plane with 

argr = +_+n-+(v-2n(k-2)). directions 

Therefore, with n = k - 2,  the requirement we set out to achieve is satisfied. 

g(7) - g(1) = e*e[+(7 - 1)2 + 3(7 - 1)3]. 

- - _-  - 

-n+2n(k-2) < v < nfSn(k-2). 

To evaluate Fk by the method of steepest descents, we set 

- - -is2 

If we choose s = ( - l)"% eiiV(7 - 1) (7 + 2)i  

with the branch cut along the negative real axis from 7 = - 2 to 7 = - 00 and 
take the branch of the square root which is real and positive for T real and 
T > - 2,  then as 7 traverses the path of steepest descent in the direction corre- 
sponding to c i ,  s increases through real values. For example, when k = 2, 
- n < v < n, both c i  and the steepest path go to infinitywith directions + Qn - @ 
in the ?.-plane. As 171 tends to infinity, arg(7- 1) and arg(7f2) tend to arg 7.  

It is readily seen that along the ray arg 7 = - +n - 80, 5 = - I (7 - 1) (7 + 2)*1, 
while along the ray arg 7 = Qn - iv, s = I (7 - 1) (7 + 2 ) t l .  The derivative ds/dr is 
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finite and non-zero in the cut plane, so that nears = 0,  T is an analytic function of 
s. For real s, Is1 2 6 > 0, we have 

where K ,  and K 2  are positive constants. 
Hence there exist positive constants K and a such that 

If we expand TA(dT/ds) in a Taylor series about s = 0, it follows from Watson's 
lemma, (Sansone & Gerretsen 1960, p. 458) that the series obtained formally 
by termwise integration over ( - 00,co) represents Fk asymptotically for 

-+n+27T(k-22) < 2, < 3T+2n(k-2) .  

Watson's lemma extends the range of v by &n in each direction. Noting that 
6 = ein eifvl+71f, the range of arg6 is therefore 

+ - ( k - 2 )  < arg6 < 27r++n(k-2). 

The result of the integration is 

pk = i ,/n ( - 1)ke- q+(+,J)i(~+l) (A 6) 

In  the 6-plane, Re (q) = 0 on three rays, denoted by cok (k = 1,2,3) extending from 

the origin: (figure 2) cok:arg[=$n--(k-1)$7r. 

These divide the <-plane (a finite neighbourhood AS' of z = 0 since z = €5) into 
three sectors sk of angle fn. Taking 8, to be the closed sector opposite COk, it 
can be seen that the choice of a branch of q is equivalent to restricting z to 
S - C0k and choosing the branch of 7 for which Re (7) 2 0 in AS', and Re (7) < 0 in 
the other two sectors. 

If we examine the asymptotic relation (A 6), we see that for 6 in any closed 
subset of the interior of S,, Fk is exponentially decreasing as +GO, and is 
exponentially increasing in a closed subset of the interior of either of the other 
two sectors. 

Appendix B. An expansion of the exact solution 
Equation (2.2) 

(0)" - a")"$ = iaR{(z - c )  ( 0 2 -  a2) $1 

(0)"-a2)$ = q? 

(02-iaB(x-c)+a2)q? = 0. 

was solved by Sommerfeld (1908). Using the substitution 

equation (B 1) becomes 
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Transforming the independent variable from x to y by 

equation (B 3) becomes 

the solutions of which are the Airy functions. Instead of using the functions 
A$( - y) and Bi( - y ) ,  it is more convenient for our present purpose to use the 

d2$ldy2 + y$ = 0, (B 5) 

in t egr a1 

where c, (k = 1 , 2,3) is as depicted in figure 1. The three solutions are not linearly 
independent as it follows from Cauchy’s theorem that 

$1+$2+$‘3 = 0. 
Any two of these three functions form a linearly independent set. The solution for 
q5 obtained by the method of variation of constants is 

where G(y) is a linear combination of any two of the functions $k(y). For our 
present purpose, we choose k = 1’2.  

To compare (B 7) with the asymptotic solution (2.21) we proceed as follows: 
in $2, the variables z and E were introduced. These are related to y by 

a 2  ia i a 3  

(aR)Q (aR)+ o ~ R  
y=-+<, ~ y = - + iaz. 

Therefore, as aR-tm, we have 
ia: y & < ;  - (aR)By iax. 

The solution for q5 may be expressed as 

Here, the solutions e*icts agree with those obtained by the method of multiple- 
scales. As for the integral in (B 8) we can let (aR)#/a be absorbed in the con- 
stants in G([), and consider the integral 

Replacing $&) by its integral representation and inverting the order of inte- 
gration, which is permissible here (Sansone & Gerretsen 1960, p. 97) we obtain 
by integrating by parts 
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If we restrict t to I t \  > 0, then 1, may be expressed as 

Noting that aiJ(aR)* = ax ,  it is clear that r$ may be represented asymptotically 

by 
(B 9) + = Klf t-2 ect++tt"dt + .zjC, t -2  ett+itSdt + K,  eiaB + K e-iaz 

4 .  
Cl 

The agreement between this solution and that obtained by the method of 
multiple-scales is evident. 
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